3.98 \(\int \frac{1}{\sqrt{a x+b x^4}} \, dx\)

Optimal. Leaf size=197 \[ \frac{x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt{\frac{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\sqrt [3]{a}+\left (1+\sqrt{3}\right ) \sqrt [3]{b} x\right )^2}} \text{EllipticF}\left (\cos ^{-1}\left (\frac{\sqrt [3]{a}+\left (1-\sqrt{3}\right ) \sqrt [3]{b} x}{\sqrt [3]{a}+\left (1+\sqrt{3}\right ) \sqrt [3]{b} x}\right ),\frac{1}{4} \left (2+\sqrt{3}\right )\right )}{\sqrt [4]{3} \sqrt [3]{a} \sqrt{\frac{\sqrt [3]{b} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\sqrt [3]{a}+\left (1+\sqrt{3}\right ) \sqrt [3]{b} x\right )^2}} \sqrt{a x+b x^4}} \]

[Out]

(x*(a^(1/3) + b^(1/3)*x)*Sqrt[(a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2)/(a^(1/3) + (1 + Sqrt[3])*b^(1/3)*x)^
2]*EllipticF[ArcCos[(a^(1/3) + (1 - Sqrt[3])*b^(1/3)*x)/(a^(1/3) + (1 + Sqrt[3])*b^(1/3)*x)], (2 + Sqrt[3])/4]
)/(3^(1/4)*a^(1/3)*Sqrt[(b^(1/3)*x*(a^(1/3) + b^(1/3)*x))/(a^(1/3) + (1 + Sqrt[3])*b^(1/3)*x)^2]*Sqrt[a*x + b*
x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.130435, antiderivative size = 197, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 13, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.231, Rules used = {2011, 329, 225} \[ \frac{x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt{\frac{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\sqrt [3]{a}+\left (1+\sqrt{3}\right ) \sqrt [3]{b} x\right )^2}} F\left (\cos ^{-1}\left (\frac{\left (1-\sqrt{3}\right ) \sqrt [3]{b} x+\sqrt [3]{a}}{\left (1+\sqrt{3}\right ) \sqrt [3]{b} x+\sqrt [3]{a}}\right )|\frac{1}{4} \left (2+\sqrt{3}\right )\right )}{\sqrt [4]{3} \sqrt [3]{a} \sqrt{\frac{\sqrt [3]{b} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\sqrt [3]{a}+\left (1+\sqrt{3}\right ) \sqrt [3]{b} x\right )^2}} \sqrt{a x+b x^4}} \]

Antiderivative was successfully verified.

[In]

Int[1/Sqrt[a*x + b*x^4],x]

[Out]

(x*(a^(1/3) + b^(1/3)*x)*Sqrt[(a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2)/(a^(1/3) + (1 + Sqrt[3])*b^(1/3)*x)^
2]*EllipticF[ArcCos[(a^(1/3) + (1 - Sqrt[3])*b^(1/3)*x)/(a^(1/3) + (1 + Sqrt[3])*b^(1/3)*x)], (2 + Sqrt[3])/4]
)/(3^(1/4)*a^(1/3)*Sqrt[(b^(1/3)*x*(a^(1/3) + b^(1/3)*x))/(a^(1/3) + (1 + Sqrt[3])*b^(1/3)*x)^2]*Sqrt[a*x + b*
x^4])

Rule 2011

Int[((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Dist[(a*x^j + b*x^n)^FracPart[p]/(x^(j*FracPart[p
])*(a + b*x^(n - j))^FracPart[p]), Int[x^(j*p)*(a + b*x^(n - j))^p, x], x] /; FreeQ[{a, b, j, n, p}, x] &&  !I
ntegerQ[p] && NeQ[n, j] && PosQ[n - j]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 225

Int[1/Sqrt[(a_) + (b_.)*(x_)^6], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(x*(s
+ r*x^2)*Sqrt[(s^2 - r*s*x^2 + r^2*x^4)/(s + (1 + Sqrt[3])*r*x^2)^2]*EllipticF[ArcCos[(s + (1 - Sqrt[3])*r*x^2
)/(s + (1 + Sqrt[3])*r*x^2)], (2 + Sqrt[3])/4])/(2*3^(1/4)*s*Sqrt[a + b*x^6]*Sqrt[(r*x^2*(s + r*x^2))/(s + (1
+ Sqrt[3])*r*x^2)^2]), x]] /; FreeQ[{a, b}, x]

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{a x+b x^4}} \, dx &=\frac{\left (\sqrt{x} \sqrt{a+b x^3}\right ) \int \frac{1}{\sqrt{x} \sqrt{a+b x^3}} \, dx}{\sqrt{a x+b x^4}}\\ &=\frac{\left (2 \sqrt{x} \sqrt{a+b x^3}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b x^6}} \, dx,x,\sqrt{x}\right )}{\sqrt{a x+b x^4}}\\ &=\frac{x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt{\frac{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\sqrt [3]{a}+\left (1+\sqrt{3}\right ) \sqrt [3]{b} x\right )^2}} F\left (\cos ^{-1}\left (\frac{\sqrt [3]{a}+\left (1-\sqrt{3}\right ) \sqrt [3]{b} x}{\sqrt [3]{a}+\left (1+\sqrt{3}\right ) \sqrt [3]{b} x}\right )|\frac{1}{4} \left (2+\sqrt{3}\right )\right )}{\sqrt [4]{3} \sqrt [3]{a} \sqrt{\frac{\sqrt [3]{b} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\sqrt [3]{a}+\left (1+\sqrt{3}\right ) \sqrt [3]{b} x\right )^2}} \sqrt{a x+b x^4}}\\ \end{align*}

Mathematica [C]  time = 0.0096315, size = 49, normalized size = 0.25 \[ \frac{2 x \sqrt{\frac{b x^3}{a}+1} \, _2F_1\left (\frac{1}{6},\frac{1}{2};\frac{7}{6};-\frac{b x^3}{a}\right )}{\sqrt{x \left (a+b x^3\right )}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/Sqrt[a*x + b*x^4],x]

[Out]

(2*x*Sqrt[1 + (b*x^3)/a]*Hypergeometric2F1[1/6, 1/2, 7/6, -((b*x^3)/a)])/Sqrt[x*(a + b*x^3)]

________________________________________________________________________________________

Maple [C]  time = 0.016, size = 671, normalized size = 3.4 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b*x^4+a*x)^(1/2),x)

[Out]

2*(1/2/b*(-b^2*a)^(1/3)-1/2*I*3^(1/2)/b*(-b^2*a)^(1/3))*((-3/2/b*(-b^2*a)^(1/3)+1/2*I*3^(1/2)/b*(-b^2*a)^(1/3)
)*x/(-1/2/b*(-b^2*a)^(1/3)+1/2*I*3^(1/2)/b*(-b^2*a)^(1/3))/(x-1/b*(-b^2*a)^(1/3)))^(1/2)*(x-1/b*(-b^2*a)^(1/3)
)^2*(1/b*(-b^2*a)^(1/3)*(x+1/2/b*(-b^2*a)^(1/3)+1/2*I*3^(1/2)/b*(-b^2*a)^(1/3))/(-1/2/b*(-b^2*a)^(1/3)-1/2*I*3
^(1/2)/b*(-b^2*a)^(1/3))/(x-1/b*(-b^2*a)^(1/3)))^(1/2)*(1/b*(-b^2*a)^(1/3)*(x+1/2/b*(-b^2*a)^(1/3)-1/2*I*3^(1/
2)/b*(-b^2*a)^(1/3))/(-1/2/b*(-b^2*a)^(1/3)+1/2*I*3^(1/2)/b*(-b^2*a)^(1/3))/(x-1/b*(-b^2*a)^(1/3)))^(1/2)/(-3/
2/b*(-b^2*a)^(1/3)+1/2*I*3^(1/2)/b*(-b^2*a)^(1/3))*b/(-b^2*a)^(1/3)/(b*x*(x-1/b*(-b^2*a)^(1/3))*(x+1/2/b*(-b^2
*a)^(1/3)+1/2*I*3^(1/2)/b*(-b^2*a)^(1/3))*(x+1/2/b*(-b^2*a)^(1/3)-1/2*I*3^(1/2)/b*(-b^2*a)^(1/3)))^(1/2)*Ellip
ticF(((-3/2/b*(-b^2*a)^(1/3)+1/2*I*3^(1/2)/b*(-b^2*a)^(1/3))*x/(-1/2/b*(-b^2*a)^(1/3)+1/2*I*3^(1/2)/b*(-b^2*a)
^(1/3))/(x-1/b*(-b^2*a)^(1/3)))^(1/2),((3/2/b*(-b^2*a)^(1/3)+1/2*I*3^(1/2)/b*(-b^2*a)^(1/3))*(1/2/b*(-b^2*a)^(
1/3)-1/2*I*3^(1/2)/b*(-b^2*a)^(1/3))/(1/2/b*(-b^2*a)^(1/3)+1/2*I*3^(1/2)/b*(-b^2*a)^(1/3))/(3/2/b*(-b^2*a)^(1/
3)-1/2*I*3^(1/2)/b*(-b^2*a)^(1/3)))^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{b x^{4} + a x}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^4+a*x)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/sqrt(b*x^4 + a*x), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{1}{\sqrt{b x^{4} + a x}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^4+a*x)^(1/2),x, algorithm="fricas")

[Out]

integral(1/sqrt(b*x^4 + a*x), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{a x + b x^{4}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x**4+a*x)**(1/2),x)

[Out]

Integral(1/sqrt(a*x + b*x**4), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{b x^{4} + a x}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^4+a*x)^(1/2),x, algorithm="giac")

[Out]

integrate(1/sqrt(b*x^4 + a*x), x)